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Traditional understanding, based on decades of research, is 
that visual cortical activity can be largely characterized by 
responses to a specific set of local features (modeled with lin-

ear filters followed by nonlinearities) and that these features become 
more selective and specialized in higher cortical areas1–4. However, 
it remains unclear to what extent this understanding can account 
for the whole of V1 (refs. 5–7), let alone the rest of the visual cor-
tex. A key challenge results from the fact that this understanding 
is based on many small studies, recording responses from differ-
ent stages in the circuit and using different stimuli and analyses5. 
The inherent experimental selection biases and lack of standardiza-
tion of this approach introduce additional obstacles to creating a 
cohesive understanding of cortical function. On the basis of these 
issues, influential reviews have questioned the validity of this stan-
dard model5–7 and have argued that “what would be most helpful is 

to accumulate a database of single-unit or multi-unit data (stimuli 
and neural responses) that would allow modelers to test their best 
theory under ecological conditions” (ref. 5). To address these issues, 
we conducted a survey of visual responses across multiple layers 
and areas in the awake mouse visual cortex, while using a diverse 
set of visual stimuli. This survey was executed in pipeline fashion, 
with standardized equipment and protocols and with strict qual-
ity-control measures not dependent upon stimulus-driven activity 
(Methods).

Previous work in mouse has revealed functional differences 
among cortical areas in layer 2/3 in terms of the spatial and temporal 
frequency tuning of neurons in each area8,9. However, it is not clear 
how these differences extend across layers and across diverse neu-
ron populations. Here we expand such functional studies to include 
12 transgenically defined neuron populations, including Cre driver 
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lines for excitatory populations across four cortical layers (from 
layer 2/3 to layer 6) and for two inhibitory populations (defined by 
Vip and Sst expression). Further, it is known that stimulus statistics 
affect visual responses, such that responses to natural scenes can-
not be well predicted by responses to noise or grating stimuli10–15. 
To examine the extent of this discrepancy and its variation across 
areas and layers, we designed a stimulus set that included both arti-
ficial (gratings and noise) and natural (scenes and movies) stimuli. 
While artificial stimuli can be easily parameterized and interpreted, 
natural stimuli are closer to what is ethologically relevant. Finally, as 
recording modalities have enabled recordings from larger popula-
tions of neurons, it has become clear that populations might code 
visual and behavioral activity in a way that is not apparent by con-
sidering single neurons alone16. Here we imaged populations of 
neurons (173 ± 115 neurons for excitatory populations and 19 ± 11 
neurons for inhibitory populations, mean ± s.d.) to explore both 
single-neuron and population coding properties.

We find that 77% of neurons in the mouse visual cortex respond 
to at least one of these visual stimuli, with many showing classi-
cal tuning properties, such as orientation- and direction-selective 
responses to gratings. These tuning properties exhibit differences 
across cortical areas and Cre lines. While subtle differences do exist 
between the excitatory Cre lines, these populations of excitatory 
neurons are largely similar; the more marked differences are among 
the inhibitory interneurons. The responses to all stimuli are highly 
sparse and variable. We find that the variability of responses is not 
strongly correlated across stimuli, in general, but this variability 
provides evidence for functional response classes. We validate these 
functional response classes with a model of neural activity that con-
tains most of the basic features found in visual neurophysiological 
modeling (for example, ‘simple’ and ‘complex’ components) as well 
as the running speed of the mouse. For one class of neurons, these 
models perform quite well, predicting responses to both artificial 
and natural stimuli equally well. However, for many neurons, the 
models provide a poor description, particularly for those in our 
largest single class of neurons, those that respond reliably to none 
of our visual stimuli. The representation of these response classes 
across areas reveals a separation of motion processing from spatial 
computations. These results demonstrate the importance of a large, 
unbiased survey for understanding neural computation.

Results
By using adult C57BL/6 mice (age 108 ± 16 d, mean ± s.d.) that 
expressed a genetically encoded calcium sensor (GCaMP6f) under 
the control of specific Cre driver lines (ten excitatory lines and two 
inhibitory lines), we imaged the activity of neurons in response to a 
battery of diverse visual stimuli. Data were collected from six differ-
ent cortical visual areas (V1, LM, AL, PM, AM and RL) and four dif-
ferent cortical layers. Visual responses of neurons at the retinotopic 
center of gaze were recorded in response to drifting gratings (DG), 
flashed static gratings (SG), locally sparse noise, natural scenes 
(NS), and natural movies (NM) (Fig. 1f), while the mouse was 
awake and free to run on a rotating disc. In total, 59,610 neurons 
were imaged from 432 experiments (Table 1). Each experiment con-
sisted of three 1-h imaging sessions, with 33.6% of neurons matched 
across all three sessions; the rest were present in either one or two 
sessions (Methods).

To systematically collect physiological data on this scale, we 
built data collection and processing pipelines (Fig. 1). The data 
collection workflow progressed from surgical headpost implanta-
tion and craniotomy to retinotopic mapping of cortical areas using 
intrinsic signal imaging, in  vivo two-photon calcium imaging of 
neuronal activity, brain fixation and histology using serial two-
photon tomography (Fig. 1a–c). To maximize data standardization 
across experiments, we developed multiple hardware and software  
tools (Fig. 1d). One of the key components was the development of 

a registered coordinate system that allowed an animal to move from 
one data collection step to the next, on different experimental plat-
forms, and maintain the same experimental and brain coordinate 
geometry (Methods). In addition to such hardware instrumenta-
tion, formalized standard operating procedures and quality-control 
metrics were crucial for the collection of these data over several 
years (Fig. 1e).

Following data collection, fluorescence movies were processed 
using automated algorithms to identify somatic regions of interest 
(ROIs) (Methods). Segmented ROIs were matched across imaging 
sessions. For each ROI, events were detected from ∆F/F by using 
an L0-regularized algorithm17 (Methods). The median average 
event magnitude during spontaneous activity was 0.0004 (arbitrary 
units, AU; event magnitude has the same units as ∆F/F) and showed  
some dependence on depth and on transgenic Cre line (Extended 
Data Fig. 1).

For each neuron, we computed the mean response to each stimu-
lus condition using the detected events, and we parameterized the 
neuron’s tuning properties. Many neurons showed robust responses, 
exhibiting orientation-selective responses to gratings, localized spa-
tial receptive fields, and reliable responses to natural scenes and 
movies (Fig. 2a–f and Extended Data Fig. 2). For each neuron and 
each categorical stimulus (that is, drifting gratings, static gratings, 
and natural scenes), the preferred stimulus condition was identified 
as the one which evoked the largest mean response for that stimu-
lus (for example, the orientation and temporal frequency with the  
largest mean response for drifting gratings). For each trial, the 
activity of a neuron was compared to a distribution of activity for 
that neuron taken during the epoch of spontaneous activity and a  
P value was computed. If at least 25% of the trials of the neuron’s 
preferred condition had a significant difference from the distribu-
tion of spontaneous activities (P < 0.05), the neuron was labeled 
responsive to that stimulus (the Methods describes the responsive-
ness criteria for locally sparse noise and natural movies). Neurons 
meeting this criterion showed a change in activity with some degree 
of reproducibility across trials. The maximum evoked responses 
were an order of magnitude larger than the spontaneous activity 
(Extended Data Fig. 1; median of 0.006 (AU) for neurons responsive 
to drifting gratings).

In total, 77% of neurons were responsive to at least one of the 
visual stimuli presented (Fig. 2g). The percentage of responsive neu-
rons depended on area and stimulus, such that V1 and LM showed 
the highest number of visually responsive neurons. This proportion 
dropped in other higher visual areas and was lowest in RL, where 
only 33% of neurons responded to any of the stimuli. Natural mov-
ies elicited responses from the most neurons, while static gratings 
elicited responses from the fewest (Fig. 2h). In addition to varying 
by area, the percentage of responsive neurons also varied by Cre line 
and layer, suggesting functional differences across these dimensions 
(Extended Data Figs. 3–7).

For responsive neurons, visual responses were parameterized by 
computing several metrics, including preferred spatial frequency, 
preferred temporal frequency, direction selectivity, receptive field 
size, and lifetime sparseness (Methods). We mapped these properties 
across cortical areas, layers, and Cre lines to examine the functional 
differences across these dimensions (Fig. 3 and Supplementary  
Figs. 1 and 2).

Comparisons across areas and layers revealed that direction 
selectivity was highest in layer 4 of V1 (Fig. 3b). While previous 
literature has found higher direction selectivity in layer 4 within V1 
(ref. 18), we found here that this result was significant across all layer 
4-specific Cre lines and extended to the higher visual areas as well. 
Comparisons across the higher visual areas revealed that, in super-
ficial layers, the lateral higher visual areas (LM and AL) showed sig-
nificantly higher direction selectivity than the medial ones (PM and 
AM), but this difference was not significant in the deeper layers. 
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This erosion of the differences between higher visual areas in deeper 
layers was found for all metrics reported here, with the population 
differences less pronounced and often not significant in layers 5 and 
6 (Fig. 3c–e and Supplementary Fig. 2).

Across all areas, layers, and stimuli, visual responses in mouse 
cortex were highly sparse (Fig. 3f). When considering the responses 
to natural scenes, we found that most neurons responded to very 
few scenes (examples in Fig. 2d). The sparseness of individual  
neurons was measured by using lifetime sparseness, which captures 

the selectivity of a neuron’s mean response to different stimulus 
conditions19,20 (Methods). A neuron that responds strongly to only a 
few scenes will have a lifetime sparseness close to 1 (Supplementary 
Fig. 3), whereas a neuron that responds broadly to many scenes will 
have a lower lifetime sparseness. Excitatory neurons had a median 
lifetime sparseness of 0.77 in response to natural scenes. While Sst 
neurons were comparable to excitatory neurons (median 0.77), Vip 
neurons exhibited low lifetime sparseness (median 0.36). Outside 
of layer 2/3, there was lower lifetime sparseness in areas RL, AM, 
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Fig. 1 | A standardized systems neuroscience data pipeline to map visual responses. a, Schematic describing the workflow followed by each mouse going 
through our large-scale data pipeline. b, Example intrinsic imaging map labeling individual visual brain areas. c, Example averaged two-photon imaging 
field of view (400 µm × 400 µm) showcasing neurons labeled with GCaMP6f. d, Custom-designed apparatus to standardize the handling of mice in two-
photon imaging. We engineered all steps of the pipeline to co-register data and tools, enabling reproducible data collection (Supplementary Figs. 13–16).  
e, number of mice passing quality-control (QC) criteria established by standardized operating procedures at each step of the data collection pipeline, with 
the recorded reasons for failure. The data collection pipeline is closely monitored to maintain consistently high data quality. f, Standardized experimental 
design of sensory visual stimuli to map the response properties of neurons across the visual cortex. Six blocks of different stimuli were presented to mice 
(left) and were distributed into three separate imaging sessions called session A, session B, and session C across different days (right).
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and PM than in areas V1, LM, and AL. Lifetime sparseness did not 
increase outside of V1; responses did not become more selective in 
the higher visual areas (Fig. 3f and Supplementary Fig. 3).

The pattern in single-neuron direction selectivity was reflected in 
our ability to decode the visual stimulus from single-trial population 
vector responses, by using all neurons, responsive and unresponsive 
(Fig. 4a and Supplementary Fig. 4). We used a k-nearest-neighbors 
classifier to predict the grating direction. When matching the tun-
ing properties, areas V1, AL, and LM showed higher decoding 
performance than areas AM, PM, and RL, and these differences 
were more pronounced in superficial layers than in deeper lay-
ers. Similarly, the population sparseness (Supplementary Fig. 3), a 
measure of the selectivity of each scene (that is, how many neurons 
respond on a given trial), largely mirrored the high average life-
time sparseness of the underlying populations (Fig. 4b). Such high 
sparseness suggests that neurons are active at different times and 
thus their activities are weakly correlated. The noise correlations of 
the populations reflected the results on population sparsity, where 
excitatory populations showed weak correlations (median 0.02) 
while inhibitory populations showed somewhat higher correlations 
(Sst neurons, median 0.06; Vip neurons, median 0.15) (Fig. 4c). The 
structure of the correlations in each population may serve to either 
help or hinder information processing16,21. To test this, we measured 
the decoding performance when stimulus trials were shuffled to 
break trial-wise correlations. This had variable effects on decoding 
performance with little pattern across areas or Cre lines (Fig. 4d).  
While the decoding performance for excitatory populations in V1 
was aided by removing correlations, in line with previous litera-
ture22, this effect was not consistent across other areas. The decod-
ing performance for Sst populations, on the other hand, was more 
consistently hurt by removing correlations, suggesting that the high 
correlations among Sst neurons were informative about the drifting 
grating stimulus.

For all stimuli, the visually evoked responses throughout the 
cortex showed large trial-to-trial variability. Even when removing 

the neurons deemed unresponsive, the percentage of responsive tri-
als for most responsive neurons at their preferred conditions was 
low, with the median less than 50% (Fig. 5a and Supplementary  
Fig. 5). This means that the majority of neurons in the mouse visual 
cortex do not usually respond to individual trials, even when pre-
sented with the stimulus condition that elicits their largest average 
response. This was true throughout the visual cortex, although V1 
showed slightly more reliable responses than higher visual areas and 
Sst interneurons, in particular, showed very reliable responses. The 
variability of responses was reflected in the high coefficient of varia-
tion, with median values for excitatory neurons above 2, indicating 
that these neurons are super-Poisson (Fig. 5b). We sought to capture 
this variability with a simple categorical model for drifting grating 
responses that attempts to predict the trial response (the integrated 
event magnitude during each trial) from the stimulus condition (the 
direction and temporal frequency of the grating or whether the trial 
was a blank sweep). This regression quantifies how well the aver-
age tuning curve predicts the response for each trial. Comparing 
the trial responses to the mean tuning curve showed a degree of 
variability even when the model was fairly successful (Fig. 5c). In 
line with this variability in visual responses, this model did a poor 
job of predicting responses to drifting gratings for most neurons  
(Fig. 5d). Few neurons were well predicted by their average tuning 
curve alone (21% of responsive neurons had r > 0.5, which became 
11% when considering all neurons, where r is the cross-validated 
correlation between model prediction and actual response). As 
expected, the ability to predict responses was correlated with the 
measured variability (r = 0.8, Pearson correlation).

One possible source of trial-to-trial variability is the locomotor 
activity of the mouse. Previous studies have shown that, not only 
is some neural activity in the mouse visual cortex associated with 
running, but visual responses are also modulated by running22–26. 
The mice in our experiments were free to run on a disc, and animals 
showed a range of running behaviors (Supplementary Fig. 6). When 
ignoring the stimulus, we found that the activities of some neurons 

Table 1 | Visual coding dataset

Cre line Layers E/i n (M/F) Age range (d) V1 LM AL PM AM RL

Emx1-IrES-Cre; 
Camk2a-tTA;Ai93

2/3, 4, 5 E 18 (13/5) 73–156 3,073 (10) 2,098 (8) 1,787 (7) 835 (4) 457 (3) 2,152 (9)

Slc17a7-IrES2-Cre; 
Camk2a-tTA;Ai93

2/3, 4, 5 E 31 (20/11) 80–149 4,840 (17) 3,230 (16) 374 (2) 1,970 (15) 235 (2) 137 (2)

Cux2-CreErT2; 
Camk2-tTA;Ai93

2/3, 4 E 38 (26/12) 79–155 5,081 (16) 2,792 (11) 3,103 (13) 2,361 (13) 1,616 (11) 1,578 (12)

rorb-IrES2-Cre; 
Camk2a-tTA;Ai93

4 E 24 (14/10) 77–141 2,218 (8) 1,191 (6) 1,242 (6) 764 (7) 735 (8) 1,126 (5)

Scnn1a-Tg3-Cre; 
Camk2a-tTA;Ai93

4 E 7 (3/4) 75–133 1,873 (9)

nr5a1-Cre;Camk2a-tTA; 
Ai93

4 E 23 (15/8) 78–168 578 (8) 421 (6) 220 (6) 331 (7) 171 (6) 1,354 (6)

rbp4-Cre_KL100; 
Camk2a-tTA;Ai93

5 E 23 (11/12) 68–144 458 (7) 485 (7) 441 (6) 509 (6) 355 (8) 93 (4)

Fezf2-CreEr; 
Ai148 (corticofugal)

5 E 8 (4/4) 88–134 407 (4) 981 (5)

Tlx3-Cre_PL56; 
Ai148 (cortico-cortical)

5 E 7 (5/2) 74–136 1181 (6) 946 (3)

ntsr1-Cre_Gn220;Ai148 6 E 10 (5/5) 79–134 573 (6) 719 (7) 581 (5)

Sst-IrES-Cre;Ai148 4, 5 I 30 (20/10) 67–154 266 (17) 301 (15) 24 (1) 247 (14) 46 (2)

Vip-IrES-Cre;Ai148 2/3, 4 I 24 (7/17) 81–148 352 (17) 315 (17) 387 (16)

The numbers of cells (and experiments) imaged for each Cre line in each cortical visual area are indicated. In total, 59,610 cells imaged in 432 experiments in 243 mice are included in this dataset.  
E, excitatory; I, inhibitory; F, female; M, male.
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were correlated with the running speed (Fig. 5e). While layer 5 
showed strong correlations in all visual areas, in the other layers, V1 
had stronger correlations than the higher visual areas, with some 
visual areas showing median negative correlations. Within V1, the 
inhibitory interneurons showed the strongest correlation with run-
ning, most notably Vip neurons in layer 2/3 (median 0.25), while 
the excitatory neurons showed weaker correlations (median 0.03).

For experiments with sufficient numbers of stimulus trials  
for a neuron’s preferred condition when the mouse was both sta-
tionary and running (>10% trials for each), we compared the 
responses in these two states. In line with other reports, many  
neurons showed modulated responses, but the effect was modest 
(Fig. 5f). The majority of neurons showed enhanced responses. 
When considering the entire population, there was a 1.9-fold 
increase in the median evoked response with running. The effect 
on individual neurons, however, was varied such that only 13% of  
neurons showed significant modulation in these conditions 
(P < 0.05, Kolmogorov–Smirnov test).

To test whether running accounted for the variability in trial-
wise responses to visual stimuli, we included a binary running state 
as a condition-dependent gain into the categorical regression (that 
is, computing separate tuning curves for the running and station-
ary conditions; Fig. 5g). This did not consistently and significantly 
improve the response prediction. When comparing the model per-
formance when the running state was included to that of the stimu-
lus-only model, we found that the distribution was largely centered 
along the diagonal, with a slight asymmetry in favor of the running-
dependent model for the better-performing models (Fig. 5h; 28% of 
responsive neurons had r > 0.5 for stimulus × running state, which 
was 21% when considering all neurons). This was further corrobo-
rated by a simpler model that predicts neural response on the basis 
of the running speed (rather than a binary condition and without 
stimulus information) (Supplementary Fig. 7). However, when con-
sidering only the 13% of neurons that showed significant modula-
tion of evoked responses (Fig. 5f), the inclusion of running in the 
categorical model provided a clear predictive advantage (Fig. 5i; the 
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the response during a single trial of that direction and temporal frequency. (For details on response visualizations, see Extended Data Fig. 2.) c, Fan plots 
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Fig. 3 | Tuning properties reveal functional differences across areas and Cre lines. a, Pawplot visualization summarizing the median value of a tuning 
metric across visual areas. Top: each visual area is represented as a circle, with V1 in the center and the higher visual areas surrounding it according to 
their location on the surface of the cortex. Bottom: each paw-pad (visual area) has two concentric circles. The area of the inner, colored circle, relative to 
the outer circle, represents the proportion of responsive cells for that layer and area. The color of the inner circle reflects the median value of the metric 
for the responsive cells. For a metric’s summary plot, four pawplots are shown, one for each layer. Only data from one Cre line are shown for each layer. 
For each panel, a pawplot is paired with a box plot or a strip plot (for single-cell and population metrics, respectively) showing the full distribution for each 
Cre line and layer in V1. Data were assigned to cortical layers on the basis of both the Cre line and the imaging depth. Data collected less than 250 µm 
from the surface were considered to be in layer 2/3, data collected between 250 and 365 µm were considered to be in layer 4, data collected between 375 
and 500 µm were considered to be in layer 5, and data collected at 550 µm were considered to be in layer 6. The box shows the quartiles of the data, and 
the whiskers extend to 1.5 times the interquartile range; points outside this range are shown as outliers. For other cortical areas, see Supplementary Fig. 1. 
b, Pawplots and box plots summarizing direction selectivity. See Extended Data Fig. 3 for sample sizes. c, Pawplots and box plots summarizing receptive 
field area. See Extended Data Fig. 5 for sample sizes. d, Pawplots and box plots summarizing preferred temporal frequencies. See Extended Data Fig. 3 for 
sample sizes. e, Pawplots and box plots summarizing preferred spatial frequencies. See Extended Data Fig. 4 for sample sizes. f, Pawplots and box plots 
summarizing lifetime sparseness of responses to natural scenes. See Extended Data Fig. 6 for sample sizes.
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Fig. 4 | Population correlations have heterogeneous impact on decoding performance. a, Pawplots and strip plots summarizing decoding performance 
for drifting grating direction using k-nearest-neighbors analysis. Each dot represents the mean fivefold cross-validated decoding performance from a single 
experiment, with the median performance for a Cre line and layer represented by the bar. See Extended Data Fig. 3 for sample sizes (column ‘expts’).  
For other cortical areas, see Supplementary Fig. 4. b, Pawplots and strip plots summarizing the population sparseness of responses to natural scenes.  
See Extended Data Fig. 6 for sample sizes (column ‘expts’). For other cortical areas, see Supplementary Fig. 3. c, Pawplots and strip plots summarizing 
noise correlations in the responses to drifting gratings. See Extended Data Fig. 3 for sample sizes (column ‘expts’). d, Pawplots and strip plots summarizing 
the impact of shuffling on decoding performance for drifting grating direction. See Extended Data Fig. 3 for sample sizes (column ‘expts’). note the diverging  
colorscale representing both negative and positive values.
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mean r for stimulus only was 0.35 and for stimulus × running was 
0.44, whereas the mean r for non-modulated neurons for stimulus 
only was 0.21 and for stimulus × running was 0.20).

One of the unique aspects of this dataset is the broad range of 
stimuli, allowing for a comparison of response characteristics and 
model predictions across stimuli. Surprisingly, knowing whether 
a neuron responded to one stimulus type (for example, natural 
scenes, drifting gratings, etc.) was largely uninformative of whether 
it responded to another stimulus type. Unlike the examples shown 
in Fig. 2, which were chosen to highlight responses to all stim-
uli, most neurons were responsive to only a subset of the stimuli  
(Fig. 6a). To explore the relationships between neural responses to 
different types of stimuli, we computed the correlation between the 
percentage of responsive trials for each stimulus. This comparison 
removes the threshold of ‘responsiveness’ and examines underlying 
patterns of activity. We found that most stimulus combinations were 
weakly correlated (Fig. 6b), demonstrating that knowing that a neu-
ron responds reliably to drifting gratings, for example, carries little 
to no information about how reliably that neuron responds to one of 
the natural movies. There was a higher correlation between the reli-
ability of the responses to the natural movie that was repeated across 
all three sessions (natural movies 1A, 1B and 1C), providing an esti-
mate of the variability introduced by imaging across days and thus 
a ceiling for the overall correlations across stimuli. Very few of the 
cross-stimulus correlations approached this ceiling, with the excep-
tion of the correlation between static gratings and natural scenes.

We characterized the variability by clustering the reliability, 
defined by the percentage of significant responses to repeated stim-
uli. We used a Gaussian mixture model to cluster the 25,958 neurons 
that were imaged in both sessions A and B (Fig. 1f) and excluded 
the locally sparse noise stimulus owing to the lack of a comparable 
definition of reliability. Using neurons imaged in all three sessions 
did not qualitatively change the results (Supplementary Fig. 8). The 
clusters are described by the mean percentage of responsive trials 
for each stimulus for each cluster (Fig. 6c). Note that there was only 
a weak relationship between the percentage of responsive trials to 
one stimulus and the percentage of responsive trials to any other 
stimulus. We grouped the clusters into ‘classes’ by first defining 
a threshold for responsiveness by identifying the cluster with the 
lowest mean percentage of responsive trials across stimuli and then 
setting the threshold equal to the maximum value across stimuli 
plus 1 s.d. for that cluster. This allowed us to identify each cluster 
as responsive (or not) to each of the stimuli. Clusters with the same 
profile (for example, responsive to drifting gratings and natural 

movies, but not to static gratings or natural scenes) were grouped 
into one of 16 possible classes.

The clustering was performed 100 times with different initial 
conditions to evaluate robustness. The optimal number of clusters, 
evaluated with model comparison, and the class definition thresh-
old were consistent across runs (Supplementary Fig. 8). By far, the 
largest single class revealed by this analysis was that of neurons that 
were largely unresponsive to all stimuli, termed ‘none’, which con-
tained 34 ± 2% of the neurons (Fig. 6d). Other large classes included 
neurons that responded to drifting gratings and natural movies 
(DG–NM; 14 ± 3%), to natural scenes and natural movies (NS–NM; 
14 ± 2%) and to all stimuli (DG–SG–NS–NM; 10 ± 1%).

Notably, we did not observe all 16 possible stimulus response 
combinations. For instance, very few neurons were classified as 
responding to one stimulus alone, with the most prominent excep-
tion being neurons that responded uniquely to natural movies. 
Thus, while the pairwise correlations between most stimuli were 
relatively weak, there was meaningful structure in the patterns of 
responses. Nevertheless, within each class there remains a great deal 
of heterogeneity. For example, within the class that responded to all 
stimuli, there was a cluster in which the neurons responded with 
roughly equal reliability to all four stimuli (cluster 27 in Fig. 6c) as 
well as clusters in which the neurons responded reliably to drifting 
and static gratings and only weakly to natural scenes and natural 
movies (clusters 25 and 28). This heterogeneity underlies the inabil-
ity to predict whether a neuron responds to one stimulus given that 
it responds to another.

Classes were not equally represented in all visual areas (Fig. 6e). 
The ‘none’ class was larger in the higher visual areas than in V1 
and was largest in RL (Fig. 2g). Classes related to moving stimuli, 
including NM, DG–NM and DG, had relatively flat distributions 
across the visual areas, excluding RL. The classes responsive to nat-
ural stimuli, including NS–NM, DG–NS–NM, SG–NS–NM, and 
DG–SG–NS–NM, were most numerous in V1 and LM, with lower 
representation in the other visual areas. This divergence in repre-
sentation of the motion stimulus response classes and natural stim-
ulus response classes in areas AL, PM, and AM is consistent with the 
putative dorsal and ventral stream segregation in the visual cortex32.

In addition to differential representation across cortical areas, 
the response classes were also differentially represented among the 
Cre lines (Fig. 6f). Notably, Sst interneurons in V1 had the fewest 
neurons labeled as ‘none’ and the most DG–SG–NS–NM neurons. 
Meanwhile, the plurality of Vip interneurons were in the classes 
responsive to natural stimuli, specifically natural movies.

Fig. 5 | Neural activity is extremely variable, and this variability is not accounted for by running behavior. a, Pawplots and box plots summarizing the 
percentage of responsive trials that had a significant response for each neuron’s preferred drifting grating condition. The responsiveness criterion was that 
a neuron responded in 25% of the trials; hence, the values in the box plots are bounded at 25%. The box shows the quartiles of the data, and the whiskers 
extend to 1.5 times the interquartile range; points outside this range are shown as outliers. For box plots for other cortical areas, see Supplementary Fig. 5. 
See Extended Data Fig. 3 for sample sizes. b, Pawplots and box plots summarizing the coefficient of variation for each neuron’s response to its preferred 
drifting grating condition. See Extended Data Fig. 3 for sample sizes. c, Two example neurons showing individual trial responses along with the mean 
tuning curve, where r is the Pearson correlation coefficient between the measured and predicted values. n = 45 trials per stimulus condition. d, Pawplots 
and box plots summarizing the categorical regression, where r is the cross-validated Pearson correlation between model prediction and actual response. 
Only neurons that were responsive to drifting gratings when using our criterion are included. See Extended Data Fig. 3 for sample sizes. e, Pawplots and 
box plots summarizing the Pearson correlation of neural activity with running speed. Only neurons in imaging sessions where the running fraction was  
between 20% and 80% are included (Supplementary Fig. 6). See Extended Data Fig. 8 for sample sizes. For neurons present in multiple sessions that  
met the running criterion, the mean of their running correlations across these sessions was used here. note the diverging colorscale representing both 
negative and positive values. f, Density plot of the evoked response to a neuron’s preferred drifting grating condition when the mouse is running  
(running speed > 1 cm s–1) compared to when it is stationary (running speed < 1 cm s–1). Only neurons that were responsive to drifting gratings and had a 
sufficient number of running and stationary trials for their preferred condition are included; n = 10,440. g, Categorical model for two example neurons  
(as in c) in which the running (blue) and stationary (red) trials have been segregated, where r is the Pearson correlation coefficient between the measured 
and predicted values. n = 14 (left) and 7 (right) trials per condition. h, Density plot of r for the categorical regression for drifting gratings using only the 
stimulus condition (horizontal axis) and the stimulus condition × running state (vertical axis). Only neurons that were responsive to drifting gratings and 
had a sufficient number of running and stationary trials across stimulus conditions are included. n = 11,799. i, As in h, except that only neurons that were 
significantly modulated by running are shown in the density (n = 2,791); other neurons are in gray.
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Having characterized neurons by their joint reliabilities to mul-
tiple stimuli, we next asked to what extent we can predict neural 
responses, not on a trial-by-trial basis but including the temporal 

response dynamics, given the stimulus and knowledge of the ani-
mal’s running condition. We used a model class that remains in 
widespread use for predicting visual physiological responses and 
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that captures both simple and complex cell behaviors. The model 
structure uses a dense wavelet basis (sufficiently dense to capture 
spatial and temporal features at the level of mouse visual acuity and 
temporal response) and computes from this both linear and qua-
dratic features, each of which are summed, along with the binary 
running trace convolved with a learned temporal filter, and sent 
through a soft rectification (Fig. 7a). We trained these models on 
either the collective natural stimuli or the artificial stimuli to predict 
the extracted event trace. Whereas we found example neurons for 

which this model worked extremely well (Fig. 7b and Supplementary  
Figs. 9–11), across the population only 2% of neurons were well fit 
by this model (r > 0.5; 2% of neurons for natural stimuli and 1% of  
neurons for artificial stimuli; Fig. 7c), with median r values of ~0.2 
(natural stimuli). Model performance was slightly higher in V1 than 
in the higher visual areas and showed little difference across Cre lines. 
It is also worth noting that there is a great deal of visually responsive 
activity that is not captured by these models (Supplementary Fig. 5). 
When comparing the models’ performances across stimulus categories,  
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Fig. 6 | Correlated response variability reveals functional classes of neurons. a, responses of 50 neurons during one imaging session (Cux2 neurons from 
layer 2/3 in V1), with stimulus epochs shaded according to the stimulus colors from Fig. 1f. b, Heat map of the Pearson correlation of the percentage of 
responsive trials for neurons’ responses to each pair of stimuli. The diagonal is the mean correlation between bootstrapped samples of the percentage of 
responsive trials for the given stimulus. c, Mean percentage of responsive trials for each cluster per stimulus for one example clustering from the Gaussian 
mixture model (n = 25,958 neurons). On the right, classes are identified according to the response profile of each cluster. d, Strip plots representing the 
percentage of neurons belonging to each class predicted by the model over 100 repeats. The mean across all repeats is indicated by the height of the bar. 
Clustering was performed on 25,958 neurons imaged in sessions A and B. e, The percentages of neurons belonging to each class per cortical area. Colors 
correspond to those in d. f, The percentage of neurons belonging to each class for each transgenic Cre line within V1. Colors correspond to those in d. For 
other cortical areas, see Supplementary Fig. 8.
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we found that the overall distribution of performance for models 
trained and tested with natural stimuli was higher than for the corre-
sponding models for artificial stimuli (Fig. 7d), in line with previous 
reports10–15. The running speed of the mouse did not add significant 
predictive power to the models, as most regression weights were 

near zero, with the exception of Vip neurons in V1 (Supplementary  
Fig. 10). Similarly, incorporating pupil area and position had little 
effect, as was also the case when the quadratic weights were removed 
at the population level (Supplementary Fig. 10). Well-fit models 
tended to have sparser weights (Supplementary Fig. 11).
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When comparing the model performance for the neurons in 
each of the classes defined through the clustering analysis, we found 
that these classes occupied spaces of model performance consistent 
with their definitions (Fig. 7e–h). The neurons classified as ‘none’ 
formed a relatively tight cluster and constituted the bulk of the den-
sity close to the origin (Fig. 7e). By definition, these neurons had the 
least response reliability for all stimuli (Fig. 6c) and were likewise 
the least predictable. Neurons in the NS–NM class showed high 
model performance for natural stimuli and low performance for 
artificial stimuli (Fig. 7f). Finally, neurons that reliably responded 
to all stimuli (DG–SG–NS–NM) showed a broad distribution of 
model performance, with the highest median performance, equally 
predicted by both artificial and natural stimuli (Fig. 7g). As running 
has been shown to influence neural activity in these data indepen-
dently of visual stimuli (Fig. 5e), one might expect that the ‘none’ 
class would be composed largely of neurons that are strongly driven 
by running activity rather than visual stimuli. Instead, we found that 
the ‘none’ class had one of the smallest median correlations, overall, 
with the running speed of the mouse, whereas the DG–SG–NS–NM 
class had the largest correlation (Fig. 7i).

Discussion
Historically, visual physiology has been dominated by single-neuron 
electrophysiological recordings in which neurons were identified by 
responding to a test stimulus. The stimulus was then hand-tuned 
to elicit the strongest reliable response from that neuron, and the 
experiment proceeded using manipulations around this condition. 
Such studies discovered many characteristic response properties, 
namely, that visual responses can be characterized by combina-
tions of linear filters with nonlinearities such as half-wave rectifica-
tion, squaring, and response normalization7 or that neurons (in V1 
at least) largely cluster into ‘simple’ and ‘complex’ cells. But these 
studies may have failed to capture the variability of responses, the 
breadth of features that will elicit a neural response, and the breadth 
of features that do not elicit a response. This results in systematic 
bias in the measurement of neurons and a confirmation bias regard-
ing model assumptions. Recently, calcium imaging and denser 
electrophysiological recordings27 have enabled large populations 
of neurons to be recorded simultaneously. Here we scaled calcium 
imaging, combining standard operating procedures with integrated 
engineering tools, to address some of the challenges of this difficult 
technique, as a means to create an unprecedented survey of 59,610 
neurons in mouse visual cortex across 243 mice while using a stan-
dard and well-studied but diverse set of visual stimuli. This pipeline 
reduced critical experimental biases by separating quality control of 
data collection from response characterization. Such a survey is cru-
cial for assessing the successes and shortcomings of contemporary 
models of the visual cortex.

By using standard noise and grating stimuli, we find many of 
the standard visual response features, including orientation selectiv-
ity, direction selectivity, and spatial receptive fields with opponent 
on and off subfields (Figs. 2 and 3). On the basis of responses to 
these stimuli, we observed functional differences in visual responses 
across cortical areas, layers, and transgenic Cre lines. In a new anal-
ysis of overall reliabilities to both artificial and naturalistic stimuli, 
we find classes of neurons responsive to different constellations of 
stimuli (Fig. 6). The different classes are largely intermingled and 
found in all of the cortical areas recorded here, suggesting a largely 
parallel organization28. At the same time, the over-representation of 
classes responsive to natural movies and motion stimuli in areas AL, 
PM, and AM relative to the other classes (which are more responsive 
to spatial stimuli) is consistent with the assignment of these areas 
to the putative ‘dorsal’ or ‘motion’ stream29. The lack of an inverse 
relationship, wherein spatial information is over-represented rela-
tive to motion in a putative ventral stream, likely reflects the fact 
that we were unable to image the putative ventral areas LI, POR, 

and P within our cranial window. Area LM has previously been 
loosely associated with the ventral stream, but with evidence that it 
is more similar to V1 than other higher-order ventral areas9,29, and 
our results appear consistent with the latter. Area RL has the largest 
proportion of neurons in the ‘none’ class, over 85%, in line with the 
very low percentage of responsive neurons (Fig. 2). It is possible that 
neurons in this area are specialized for visual features not probed 
here or that they show a greater degree of multimodality than in the 
other visual areas, integrating somatosensory and visual features30.

One of the unique features of this dataset is that it includes a 
large number of different transgenic Cre lines for characterization 
that label specific populations of excitatory and inhibitory neurons. 
On a coarse scale, excitatory populations behave similarly; however, 
closer examination reveals distinct functional properties across 
Cre lines. For instance, neurons expressing Rorb, Scnn1a-Tg3,  
and Nr5a1, which label distinct layer 4 populations in V1, exhibit 
distinct spatial and temporal tuning properties (Fig. 3 and 
Supplementary Figs. 1 and 2), different degrees of running correla-
tion (Fig. 5) and subtle differences in their class distribution (Fig. 6). 
These differences suggest that there are separate channels of feed-
forward information. Similar differences between Fezf2 and Ntsr1 
in V1, which label two distinct populations of corticofugal neurons 
found in layers 5 and 6, respectively, indicate distinct feedback 
channels from V1.

The Brain Observatory data also provide a broad survey of visu-
ally evoked responses for both Vip and Sst inhibitory Cre lines. Sst 
neurons are strongly driven by all visual stimuli used here, with the 
plurality belonging to the DG–SG–NS–NM class (Fig. 5f). Their 
responses to drifting gratings are particularly robust in that 94% of 
Sst neurons in V1 are responsive to drifting gratings and respond 
quite reliably across trials, far more than is seen in the other Cre 
lines (Extended Data Fig. 3 and Supplementary Fig. 5). Vip neurons, 
on the other hand, are largely unresponsive to, and even suppressed 
by, drifting gratings, with only 9% of Vip neurons in V1 labeled 
responsive. This extreme difference between these two populations 
is consistent with previous literature examining the size tuning of 
these interneurons and supports the disinhibitory circuit between 
them23,31,32. Vip neurons, however, are very responsive to both natu-
ral scenes and natural movies, with the majority falling in the NS–
NM class (Fig. 6f, Extended Data Figs. 6 and 7, and Supplementary 
Fig. 8), but show little selectivity to these stimuli, as their median 
lifetime sparseness is lower than that for both the Sst and excitatory 
neurons (Fig. 3f). Interestingly, receptive field mapping using locally 
sparse noise revealed that Vip neurons in V1 have remarkably large 
receptive field areas, larger than those of both Sst and excitatory 
neurons (Fig. 3f), in contrast to the smaller summation area for Vip 
neurons previously measured using windowed drifting gratings23,33. 
This suggests that Vip neurons respond to small features over a large 
region of space. Further, both populations show strong running 
modulation: responses for both correlate more strongly with the 
mouse’s running speed than is seen for the excitatory populations 
(Fig. 5e), and a model based solely on the mouse’s running speed 
does a better job at predicting their activity than for the excitatory 
populations (Supplementary Fig. 7).

The true test of a model is its ability to predict arbitrary novel 
responses, in addition to responses from stimuli used for charac-
terization. Even with the inclusion of running, our models predict 
responses in a minority of neurons (Fig. 7).

Neurons in the DG–SG–NS–NM class were well predicted, with 
values comparable to those found in primates7,11,34,35, for both natu-
ral and artificial stimuli (Fig. 7g). On the basis of the way we chose 
our stimulus parameters, we expected that neurons with a strong 
‘classical receptive field’ would be most likely to appear in this class. 
However, this class constitutes only 10% of the mouse visual cortex 
(Fig. 6d). Neurons in the NS–NM class show equally high predic-
tion for natural stimuli, but poor prediction for artificial stimuli 
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(Fig. 7f). It is possible that these neurons could be classical neurons 
as well but are tuned for spatial or temporal frequencies that were 
not included in our stimulus set. As our stimulus parameters were 
chosen to match previous measurements of mouse acuity, this could 
suggest that the acuity in mice has been underestimated36.

Remarkably, the largest class of neurons was the ‘none’ class, 
constituting neurons that did not respond reliably to any of the 
stimuli (34% of neurons). These neurons are the least likely to be 
described by classical receptive fields, as evidenced by their poor 
model performance for all stimuli (Fig. 7f). What, then, do these 
neurons do? It is possible that these neurons are visually driven but 
are responsive to highly sparse and specific natural features that 
may arise through hierarchical processing37. Indeed, the field has 
a growing body of evidence that the rodent visual system exhibits 
sophisticated computations. For instance, neurons as early as V1 
show visual responses to complex stimulus patterns38. Alternatively, 
these neurons could be involved in non-visual computation, includ-
ing behavioral responses such as reward timing and sequence learn-
ing39, as well as modulation by multimodal sensory stimuli39,40 and 
motor signals24,26,41–43. While we found little evidence that these neu-
rons were correlated with a mouse’s running, recent work has found 
running to be among the least predictive of such motor signals43.

We believe that the openly available Allen Brain Observatory 
provides an important foundational resource for the community.  
In addition to providing an experimental benchmark, these data 
serve as a testbed for theories and models. Already, these data 
have been used by other researchers to develop image processing  
methods44,45, to examine stimulus encoding and decoding46–49 and 
to test models of cortical computations50. Ultimately, we expect that 
these data will seed as many questions as they answer, fueling oth-
ers to pursue both new analyses and further experiments to unravel 
how cortical circuits represent and transform sensory information.
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summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information; details of author 
contributions and competing interests; and statements of data and 
code availability are available at https://doi.org/10.1038/s41593-
019-0550-9.

Received: 23 May 2019; Accepted: 28 October 2019;  
Published online: 16 December 2019

References
 1. Hubel, D. & Wiesel, T. Receptive fields of single neurones in the cat’s striate 

cortex. J. Physiol. 148, 574–591 (1959).
 2. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction  

and functional architecture in the cat’s visual cortex. J. Physiol. 160,  
106–154 (1962).

 3. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the 
primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

 4. DiCarlo, J. J., Zoccolan, D. & Rust, N. C. How does the brain solve visual 
object recognition? Neuron 73, 415–434 (2012).

 5. Olshausen, B. & Field, D. What is the other 85% of V1 doing? in 23 Problems 
in Systems Neuroscience (eds. van Hemmen, J. & Sejnowski, T.) 182–211 
(Oxford University Press, 2006).

 6. Masland, R. H. & Martin, P. R. The unsolved mystery of vision. Curr. Biol. 17, 
R577–R582 (2007).

 7. Carandini, M. et al. Do we know what the early visual system does?  
J. Neurosci. 25, 10577–10597 (2005).

 8. Andermann, M. L., Kerlin, A. M., Roumis, D. K., Glickfeld, L. L. & Reid, R. C.  
Functional specialization of mouse higher visual cortical areas. Neuron 72, 
1025–1039 (2011).

 9. Marshel, J. H., Garrett, M. E., Nauhaus, I. & Callaway, E. M. Functional 
specialization of seven mouse visual cortical areas. Neuron 72,  
1040–1054 (2011).

 10. Fournier, J., Monier, C., Pananceau, M. & Frégnac, Y. Adaptation of the 
simple or complex nature of V1 receptive fields to visual statistics.  
Nat. Neurosci. 14, 1053–1060 (2011).

 11. David, S., Vinje, W. & Gallant, J. L. Natural stimulus statistics alter the 
receptive field structure of V1 neurons. J. Neurosci. 24, 6991–7006 (2004).

 12. Talebi, V. & Baker, C. L. Natural versus synthetic stimuli for estimating 
receptive field models: a comparison of predictive robustness. J. Neurosci. 32, 
1560–1576 (2012).

 13. Yeh, C.-I., Xing, D., Williams, P. & Shapley, R. Stimulus ensemble and cortical 
layer determine V1 spatial receptive fields. Proc. Natl Acad. Sci. USA 106, 
14652–14657 (2009).

 14. Sharpee, T. O. et al. Adaptive filtering enhances information transmission in 
visual cortex. Nature 439, 936–942 (2006).

 15. Felsen, G., Touryan, J., Han, F. & Dan, Y. Cortical sensitivity to visual features 
in natural scenes. PLoS Biol. 3, e342 (2005).

 16. Averbeck, B. B., Latham, P. E. & Pouget, A. Neural correlations, population 
coding and computation. Nat. Rev. Neurosci. 7, 358–366 (2006).

 17. Jewell, S., Hocking, T. D., Fearnhead, P. & Witten, D. Fast nonconvex 
deconvolution of calcium imaging data. Biostatistics https://doi.org/10.1093/
biostatistics/kxy083 (2019).

 18. Sun, W., Tan, Z., Mensh, B. D. & Ji, N. Thalamus provides layer 4 of primary 
visual cortex with orientation- and direction-tuned inputs. Nat. Neurosci. 19, 
308–315 (2016).

 19. Rolls, E. T. & Tovee, M. J. Sparseness of the neuronal representation of 
stimuli in the primate temporal visual cortex. J. Neurophysiol. 73,  
713–726 (1995).

 20. Vinje, W. E. & GallantJ. L. Sparse coding and decorrelation in primary visual 
cortex during natural vision. Science 287, 1273–1276 (2000).

 21. Kohn, A., Coen-Cagli, R., Kanitscheider, I. & Pouget, A. Correlations and 
neuronal population information. Annu. Rev. Neurosci. 39, 237–256 (2016).

 22. Dadarlat, M. C. & Stryker, M. P. Locomotion enhances neural encoding of 
visual stimuli in mouse V1. J. Neurosci. 37, 3764–3775 (2017).

 23. Dipoppa, M. et al. Vision and locomotion shape the interactions between 
neuron types in mouse visual cortex. Neuron 98, 602–615 (2018).

 24. Niell, C. M. & Stryker, M. P. Modulation of visual responses by behavioral 
state in mouse visual cortex. Neuron 65, 472–479 (2010).

 25. Polack, P. O., Friedman, J. & Golshani, P. Cellular mechanisms of brain 
state-dependent gain modulation in visual cortex. Nat. Neurosci. 16, 
1331–1339 (2013).

 26. Saleem, A., Ayaz, A., Jeffery, K., Harris, K. & Carandini, M. Integration of 
visual motion and locomotion in mouse visual cortex. Nat. Neurosci. 16, 
1864–1869 (2013).

 27. Jun, J. J. et al. Fully integrated silicon probes for high-density recording of 
neural activity. Nature 551, 232 (2017).

 28. Han, Y. et al. The logic of single-cell projections from visual cortex. Nature 
556, 51–56 (2018).

 29. Wang, Q., Sporns, O. & Burkhalter, A. Network analysis of corticocortical 
connections reveals ventral and dorsal processing streams in mouse visual 
cortex. J. Neurosci. 32, 4386–4399 (2012).

 30. Olcese, U., Iurilli, G. & Medini, P. Cellular and synaptic architecture of 
multisensory integration in the mouse neocortex. Neuron 79, 579–593 (2013).

 31. Pfeffer, C. K., Xue, M., He, M., Huang, Z. J. & Scanziani, M. Inhibition of 
inhibition in visual cortex: the logic of connections between molecularly 
distinct interneurons. Nat. Neurosci. 16, 1068–1076 (2013).

 32. Fu, Y. et al. A cortical circuit for gain control by behavioral state. Cell 156, 
1139–1152 (2014).

 33. Adesnik, H., Bruns, W., Taniguchi, H., Huang, Z. J. & Scanziani, M. A neural 
circuit for spatial summation in visual cortex. Nature 490, 226–231 (2012).

 34. McFarland, J. M., Cumming, B. G. & Butts, D. A. Variability and correlations 
in primary visual cortical neurons driven by fixational eye movements.  
J. Neurosci. 36, 6225–6241 (2016).

 35. Vintch, B., Movshon, J. A. & Simoncelli, E. P. A convolutional subunit model 
for neuronal responses in macaque V1. J. Neurosci. 35, 14829–14841 (2015).

 36. Dyballa, L., Hoseini, M. S., Dadarlat, M. C., Zucker, S. W. & Stryker, M. P. 
Flow stimuli reveal ecologically appropriate responses in mouse visual cortex. 
Proc. Natl Acad. Sci. USA 115, 11304–11309 (2018).

 37. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T. & Lipson, H. Understanding 
neural networks through deep visualization. Deep Learning Workshop, 31st 
International Conference on Machine Learning, Lille, France. Preprint at arXiv 
https://arxiv.org/abs/1506.06579 (2015).

 38. Palagina, G., Meyer, J. F. & Smirnakis, S. M. Complex visual motion 
representation in mouse area V1. J. Neurosci. 37, 164–183 (2017).

 39. Bieler, M. et al. Rate and temporal coding convey multisensory information 
in primary sensory cortices. eNeuro 4, ENEURO.0037-17.2017 (2017).

 40. Ibrahim, L. A. et al. Cross-modality sharpening of visual cortical processing 
through layer-1-mediated inhibition and disinhibition. Neuron 89,  
1031–1045 (2016).

 41. Keller, G. B., Bonhoeffer, T. & Hübener, M. Sensorimotor mismatch  
signals in primary visual cortex of the behaving mouse. Neuron 74,  
809–815 (2012).

 42. Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide 
activity. Science 364, eaav7893 (2019).

NATURE NEUROSCiENCE | VOL 23 | JAnUAry 2020 | 138–151 | www.nature.com/natureneuroscience150

https://doi.org/10.1038/s41593-019-0550-9
https://doi.org/10.1038/s41593-019-0550-9
https://doi.org/10.1093/biostatistics/kxy083
https://doi.org/10.1093/biostatistics/kxy083
https://arxiv.org/abs/1506.06579
http://www.nature.com/natureneuroscience


ResouRceNATurE NEurOsCiENCE

 43. Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. 
Single-trial neural dynamics are dominated by richly varied movements.  
Nat. Neurosci. 22, 1677–1686 (2019).

 44. Petersen, A., Simon, N. & Witten, D. SCALPEL: extracting  
neurons from calcium imaging data. Ann. Appl. Stat. 12,  
2430–2456 (2018).

 45. Sheintuch, L. et al. Tracking the same neurons across multiple days in Ca2+ 
imaging data. Cell Rep. 21, 1102–1115 (2017).

 46. Ellis, R. J. et al. High-accuracy decoding of complex visual scenes from 
neuronal calcium responses. Preprint at bioRxiv https://doi.
org/10.1101/271296 (2018).

 47. Cai, L., Wu, B. & Ji, S. Neuronal activities in the mouse visual cortex predict 
patterns of sensory stimuli. Neuroinformatics 16, 473–488 (2018).

 48. Zylberberg, J. Untuned but not irrelevant: a role for untuned neurons in 
sensory information coding. Preprint at bioRxiv https://doi.org/10.1101/134379 
(2017).

 49. Christensen, A. J. & Pillow, J. W. Running reduces firing but improves  
coding in rodent higher-order visual cortex. Preprint at bioRxiv  
https://doi.org/10.1101/214007 (2017).

 50. Sweeney, Y. & Clopath, C. Population coupling predicts the plasticity  
of stimulus responses in cortical circuits. Preprint at bioRxiv  
https://doi.org/10.1101/265041 (2018).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019

NATURE NEUROSCiENCE | VOL 23 | JAnUAry 2020 | 138–151 | www.nature.com/natureneuroscience 151

https://doi.org/10.1101/271296
https://doi.org/10.1101/271296
https://doi.org/10.1101/134379
https://doi.org/10.1101/214007
https://doi.org/10.1101/214007
https://doi.org/10.1101/265041
https://doi.org/10.1101/265041
http://www.nature.com/natureneuroscience


ResouRce NATurE NEurOsCiENCE

Methods
Transgenic mice. All animal procedures were approved by the Institutional 
Animal Care and Use Committee (IACUC) at the Allen Institute for Brain Science 
in compliance with NIH guidelines. Transgenic mouse lines were generated by 
using conventional and bacterial artificial chromosome (BAC) transgenic or 
knock-in strategies as previously described51,52. External sources included Cre 
lines generated as part of the NIH Neuroscience Blueprint Cre Driver Network 
(http://www.credrivermice.org) and the GENSAT project (http://gensat.org/), as 
well as individual labs. In transgenic lines with regulatable versions of Cre, young 
adult tamoxifen-inducible mice (CreERT2) were treated with ~200 μl of tamoxifen 
solution (0.2 mg g–1 body weight) via oral gavage once per day for five consecutive 
days to activate Cre recombinase.

We used the transgenic mouse line Ai93, in which GCaMP6f expression is 
dependent on the activity of both Cre recombinase and the tetracycline-controlled 
transactivator protein (tTA)51. Ai93 mice were first crossed with Camk2a-tTA 
mice, and the double-transgenic mice were then crossed with a Cre driver line. 
For some Cre divers, we alternatively leveraged the TIGRE2.0 transgenic platform 
that combines the expression of tTA and GCaMP6f in a single reporter line 
(Ai148(TIT2L-GC6f-ICL-tTA2))53.

In Cux2-CreERT2;Camk2a-tTA;Ai93(TITL-GCaMP6f) mice, expression is 
regulated by the tamoxifen-inducible Cux2 promoter, the induction of which 
results in Cre-mediated expression of GCaMP6f predominantly in superficial 
cortical layers 2, 3 and 4 (ref. 54; Supplementary Fig. 12 and Supplementary Table 1).  
Both Emx1-IRES-Cre;Camk2a-tTA;Ai93 and Slc17a7-IRES2-Cre;Camk2a-
tTA;Ai93 are pan-excitatory lines and show expression throughout all cortical 
layers55,56. Sst-IRES-Cre;Ai148 mice exhibit GCaMP6f in somatostatin-expressing 
neurons57. Vip-IRES-Cre;Ai148 mice exhibit GCaMP6f in Vip-expressing cells 
by the endogenous promoter/enhancer elements of the vasoactive intestinal 
polypeptide locus57. Rorb-IRES2-Cre;Cam2a-tTA;Ai93 mice exhibit GCaMP6f in 
excitatory neurons in cortical layer 4 (dense patches) and layers 5 and 6 (sparse)55. 
Scnn1a-Tg3-Cre;Camk2a-tTA;Ai93 mice exhibit GCaMP6f in excitatory neurons 
in cortical layer 4 and in restricted areas within the cortex, in particular in 
primary sensory cortices. Nr5a1-Cre;Camk2a-tTA;Ai93 mice exhibit GCaMP6f 
in excitatory neurons in cortical layer 4 (ref. 58). Rbp4-Cre;Camk2a-tTA;Ai93 
mice exhibit GCaMP6f in excitatory neurons in cortical layer 5 (ref. 59). Fezf2-
CreER;Ai148 mice exhibit GCaMP6f in subcerebral projection neurons in layers 
5 and 6 (ref. 60). Tlx3-Cre_PL56;Ai148 mice exhibit GCaMP6f primarily restricted 
to IT corticostriatal in layer 5 (ref. 59). Ntsr1-Cre_GN220;Ai148 mice exhibit 
GCaMP6f in excitatory corticothalamic neurons in cortical layer 6 (ref. 61).

We maintained all mice on a reverse 12-h light cycle after surgery and 
throughout the duration of the experiment and performed all experiments  
during the dark cycle.

Cross-platform registration. To register data acquired between instruments and 
repeatedly target and record neurons in brain areas identified with intrinsic imaging, 
we developed a system for cross-platform registration (Supplementary Fig. 13).

Surgery. Transgenic mice expressing GCaMP6f were weaned and genotyped at 
approximately postnatal day (P) 21, and surgery was performed between P37 and 
P63. Surgical eligibility criteria included (1) weight ≥ 19.5 g (males) or ≥ 16.7 g 
(females); (2) normal behavior and activity; and (3) healthy appearance and 
posture. A preoperative injection of dexamethasone (3.2 mg kg–1, subcutaneously) 
was administered 3 h before surgery. Mice were initially anesthetized with 5% 
isoflurane (1–3 min) and placed in a stereotaxic frame (model 1900, Kopf), and 
isoflurane levels were maintained at 1.5–2.5% for the duration of the surgery. 
An injection of carprofen (5–10 mg kg–1, subcutaneously) was administered, an 
incision was made to remove skin and the exposed skull was leveled with respect to 
pitch (bregma–lamda level), roll and yaw (Supplementary Fig. 14).

Intrinsic imaging. A retinotopic map was created by using ISI to define visual 
area boundaries and target in vivo two-photon calcium imaging experiments to 
consistent retinotopic locations62. Mice were lightly anesthetized with 1–1.4% 
isoflurane administered with a somnosuite (model 715, Kent Scientific). Vital signs 
were monitored with a Physiosuite (model PS-MSTAT-RT, Kent Scientific). Eye 
drops (Lacri-Lube Lubricant Eye Ointment, Refresh) were applied to maintain 
hydration and clarity of eye during anesthesia. Mice were headfixed for imaging 
normal to the cranial window.

The brain surface was illuminated with two independent LED lights, one 
green (peak λ = 527 nm and full width at half-maximum (FWHM) = 50 nm; Cree, 
C503B-GCN-CY0C0791) and one red (peak λ = 635 nm and FWHM = 20 nm; 
Avago Technologies, HLMP-EG08-Y2000), mounted on the optical lens. A pair of 
Nikon lenses (Nikon Nikkor 105mm f/2.8, Nikon Nikkor 35mm f/1.4) provided 
×3.0 magnification (M = 105/35) onto an Andor Zyla 5.5 10tap sCMOS camera. A 
bandpass filter (Semrock, FF01-630/92nm) was used to only record reflected red 
light onto the brain.

A 24-inch monitor was positioned 10 cm from the right eye. The monitor 
was rotated 30° relative to the animal’s dorsoventral axis and tilted 70° off the 
horizon to ensure that the stimulus was perpendicular to the optic axis of the eye. 
The visual stimulus displayed comprised a 20° × 155° drifting bar containing a 

checkerboard pattern, with individual square sizes measuring 25°, that alternated 
black and white as it moved across a mean-luminance gray background. The bar 
moved in each of the four cardinal directions ten times. The stimulus was warped 
spatially so that a spherical representation could be displayed on a flat monitor9.

After defocusing from the surface vasculature (between 500 μm and 1,500 μm 
along the optical axis), up to ten independent ISI time series were acquired and 
used to measure the hemodynamic response to the visual stimulus. Averaged sign 
maps were produced from a minimum of three time series images for a combined 
minimum average of 30 stimulus sweeps in each direction63.

The resulting ISI maps were automatically segmented by comparing the sign,  
location, size, and spatial relationships of the segmented areas against those compiled  
in an ISI-derived atlas of visual areas. Manual correction and editing of the 
segmentation were applied to correct errors. Finally, target maps were created to 
guide in vivo two-photon imaging location by using the retinotopic map for each 
visual area, restricted to within 10° of the center of gaze (Supplementary Fig. 15).

Habituation. After successful ISI mapping, mice spent 2 weeks being habituated 
to head fixation and visual stimulation. During the first week, mice were handled 
and headfixed for progressively longer durations, ranging from 5 to 10 min. During 
the second week, mice were headfixed and presented with visual stimuli, starting 
for 10 min and progressing to 50 min of visual stimuli by the end of the week, 
including all of the stimuli used during data collection. Mice received a single  
60-min habituation session on the two-photon microscope with visual stimuli.

Two-photon in vivo calcium imaging. Calcium imaging was performed with 
a two-photon imaging instrument (either a Scientifica Vivoscope or a Nikon 
A1R MP+; the Nikon system was adapted to provide space to accommodate the 
running disc). Laser excitation was provided by a Ti:Sapphire laser (Chameleon 
Vision–Coherent) at 910 nm. Precompensation was set at ~10,000 fs2. Movies were 
recorded at 30 Hz with resonant scanners over a 400-μm field of view (FOV). 
Temporal synchronization of all datastreams (calcium imaging, visual stimulation, 
body and eye tracking cameras) was achieved by recording all experimental clocks 
on a single NI PCI-6612 digital IO board at 100 kHz.

Mice were headfixed on top of a rotating disc and were free to walk at will. 
The disc was covered with a layer of removable foam (Super-Resilient Foam, 
86375K242, McMaster). Data were initially obtained with the mouse eye centered 
both laterally and vertically on the stimulus monitor and positioned 15 cm from 
the monitor, with the monitor parallel to the mouse’s body. Later, the monitor was 
moved to better fill the visual field. The normal distance of the monitor from the 
eye remained 15 cm, but the monitor center moved to a position 118.6 mm lateral, 
86.2 mm anterior and 31.6 mm dorsal to the right eye.

An experiment container consisted of three 1-h imaging sessions at a given FOV 
during which mice passively observed three different stimuli. One imaging session 
was performed per mouse per day, for a maximum of 16 sessions per mouse.

On the first day of imaging at a new FOV, the ISI targeting map was used to 
select spatial coordinates. A comparison of superficial vessel patterns was used 
to verify the appropriate location by imaging over an FOV of ~800 μm using 
epifluorescence and blue light illumination. Once a region was selected, the 
objective was shielded from stray light coming from the stimulus monitor  
with opaque black tape. In two-photon imaging mode, the desired depth of 
imaging was set to record from a specific cortical depth. On subsequent  
imaging days, we returned to the same location by matching (1) the pattern of 
vessels in epifluorescence with (2) the pattern of vessels in two-photon imaging 
and (3) the pattern of cellular labeling in two-photon imaging at the previously 
recorded location.

Once a depth location was stabilized, a combination of PMT gain and laser 
power was selected to maximize laser power (on the basis of a look-up table 
against depth) and dynamic range while avoiding pixel saturation. The stimulus 
monitor was clamped in position, and the experiment began. Two-photon movies 
(512 × 512 pixels, 30 Hz), eye tracking (30 Hz) and a side-view full-body camera 
(30 Hz) were recorded. Recording sessions were interrupted and/or failed if any 
of the following was observed: (1) mouse stress, as shown by excessive secretion 
around the eye, nose bulge and/or abnormal posture; (2) excessive pixel saturation 
(>1,000 pixels), as reported in a continuously updated histogram; (3) loss of 
baseline intensity in excess of 20% caused by bleaching and/or loss of immersion 
water; and (4) hardware failures causing a loss of data integrity. Immersion water 
was occasionally supplemented while imaging by using a micropipette taped to 
the objective (Microfil, MF28G67-5WPI) and connected to a 5-ml syringe via 
extension tubing. At the end of each session, a z stack of images (±30 μm around 
the imaging site, 0.1-μm step) was collected to evaluate cortical anatomy and z drift 
during the course of the experiment. Experiments with z drift above 10 µm over the 
course of the entire session were excluded. In addition, for each FOV, a full-depth 
cortical z stack (~700-μm total depth, 5-μm step) was collected to document the 
imaging site location (Supplementary Figs. 16 and 17).

Detection of epileptic mice for exclusion. Before two-photon imaging, each 
mouse was screened for the presence of interictal events in two ways. First, on the 
habituation day on the two-photon rig, we collected a 5-min-long video on the 
surface of S1 by using the epifluorescence light path of the two-photon rig. For 
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each of these videos, we detected all calcium events present across the entire FOV 
and counted the number of events with a prominence superior to 10% ∆F/F and a 
width between 100 and 300 ms (ref. 64). Second, a similar analysis was performed 
for all two-photon calcium videos collected. Except for inhibitory lines, any 
mouse that showed the presence of these large and fast events was reviewed and 
excluded from the pipeline. Inhibitory lines were excluded from this analysis as the 
neuronal labeling was too sparse to reliably distinguish these events from normal 
spontaneous activity.

Visual stimulation. Visual stimuli were generated with custom scripts written in 
PsychoPy65,66 (Peirce, 2007, 2008) and were displayed on an ASUS PA248Q LCD 
monitor, with 1,920 × 1,200 pixels. Stimuli were presented monocularly, and the 
monitor was positioned 15 cm from the eye and spanned 120° × 95° of visual space. 
Each monitor was gamma corrected and had a mean luminance of 50 cd m–2. To 
account for the close viewing angle, spherical warping was applied to all stimuli to 
ensure that the apparent size, speed, and spatial frequency were constant across the 
monitor as seen from the mouse’s perspective.

Visual stimuli included drifting gratings, static gratings, locally sparse noise, 
natural scenes, and natural movies. These stimuli were distributed across three 
~60-min imaging sessions (Fig. 1f). Session A included drifting gratings and 
natural movies 1 and 3. Session B included static gratings, natural scenes and 
natural movie 1. Session C included locally sparse noise and natural movies 1  
and 2. The different stimuli were presented in segments of 5–13 min and interleaved.  
At least 5 min of spontaneous activity was recorded in each session.

The drifting gratings stimulus consisted of a full-field drifting sinusoidal 
grating at a single spatial frequency (0.04 cycles per degree) and contrast (80%). 
The grating was presented at eight different directions (separated by 45°) and at 
five temporal frequencies (1, 2, 4, 8 and 15 Hz). Each grating was presented for 2 s, 
followed by 1 s of mean-luminance gray. Each grating condition was presented 15 
times. Trials were randomized, with blank sweeps (that is, mean-luminance gray 
instead of grating) presented approximately once every 20 trials.

The static gratings stimulus consisted of a full-field static sinusoidal grating 
at a single contrast (80%). The grating was presented at six different orientations 
(separated by 30°), five spatial frequencies (0.02, 0.04, 0.08, 0.16 and 0.32 cycles 
per degree), and four phases (0, 0.25, 0.5 and 0.75). The grating was presented for 
0.25 s, with no inter-grating gray period. Each grating condition was presented ~50 
times. Trials were randomized, with blank sweeps presented approximately once 
every 25 trials.

The natural scenes stimulus consisted of 118 natural images. Images were 
taken from the Berkeley Segmentation Dataset67, the van Hateren Natural Image 
Dataset68, and the McGill Calibrated Colour Image Database69. The images were 
presented in grayscale and were contrast normalized and resized to 1,174 × 918 
pixels. The images were presented for 0.25 s each with no inter-image gray period. 
Each image was presented ~50 times. Trials were randomized, with blank sweeps 
approximately once every 100 images.

Three natural movie clips were used from the opening scene of the movie 
Touch of Evil (Orson Wells, Universal Pictures, 1958). Natural movies 1 and 2 
were both 30-s clips, while natural movie 3 was a 120-s clip. All clips had been 
contrast-normalized and were presented in grayscale at 30 frames per second. Each 
movie was presented ten times with no inter-trial gray period. Natural movie 1 was 
presented in each imaging session.

The locally sparse noise stimulus consisted of white and dark spots on a mean-
luminance gray background. Each spot was square, with 4.65° on a side. Each 
frame had ~11 spots on the monitor, with no two spots within 23° of each other, 
and was presented for 0.25 s. Each of the 16 × 28 spot locations was occupied by 
white and black spots a variable number of times (mean = 115). For most of the 
collected data, this stimulus was adapted such that half of it used 4.65° spots while 
the other half used 9.3° spots, with an exclusion zone of 46.5°.

Serial two-photon tomography. Serial two-photon tomography was used to 
obtain a three-dimensional (3D) image volume of coronal brain images for 
each specimen. This 3D volume enables spatial registration of each specimen’s 
associated ISI and optical physiology data to the Allen Mouse Common 
Coordinate Framework (CCF). Methods for this procedure have been described 
in detail in whitepapers associated with the Allen Mouse Brain Connectivity Atlas 
and in Oh et al.70.

Post-mortem assessment of brain structure. Morphological and structural 
analysis of each brain was performed following collection of the two-photon serial 
imaging (TissueCyte) dataset (Supplementary Fig. 18).

The following characteristics warranted an automatic failure of all associated 
data: (1) an abnormal GCaMP6f expression pattern; (2) necrotic brain tissue;  
(3) compression of the contralateral cortex that resulted in disruption to the 
cortical laminar structure; and (4) compression of the ipsilateral cortex or  
adjacent to the cranial window.

The following characteristics were further reviewed and may have resulted 
in failure of the associated data: (1) compression of the contralateral cortex due 
to a skull growth; (2) excessive compression of the cortex underneath the cranial 
window; and (3) abnormal or enlarged ventricles.

Image processing. For each two-photon imaging session, the image processing 
pipeline performed: (1) spatial or temporal calibration specific to a particular 
microscope, (2) motion correction, (3) image normalization to minimize 
confounding random variations between sessions, (4) segmentation of connected 
shapes and (5) classification of soma-like shapes from remaining clutter 
(Supplementary Figs. 19 and 20).

The motion correction algorithm relied on phase correlation and only 
corrected for rigid translational errors. It performed the following steps. Each 
movie was partitioned into 400 consecutive frame blocks, representing 13.3 s 
of video. Each block was registered iteratively to its own average three times 
(Supplementary Fig. 20a,b). A second stage of registration integrated the periodic 
average frames themselves into a single global average frame through six 
additional iterations (Supplementary Fig. 20c). The global average frame served 
as the reference image for the final resampling of every raw frame in the video 
(Supplementary Fig. 20d).

Each 13.3-s block was used to generate normalized periodic averages with the 
following steps. First, we subtracted the mean from the maximum projection to 
retain pixels from active cells (Supplementary Fig. 20e–g). To select objects of the 
right size during segmentation, we convolved all periodic normalized averages with 
a 3 × 3 median filter and a 47 × 47 high-pass mean filter. We then normalized the 
histogram of all resulting frames (Supplementary Fig. 20g,h).

All normalized periodic averages were then segmented with an adaptive 
threshold filter to create an initial estimate of binarized ROI masks of unconnected 
components (Supplementary Fig. 20i). Given the lower expression of GCaMP6f 
in cell nuclei, good detections from somata tended to show bright outlines and 
dark interiors. We then performed a succession of morphological operations to fill 
closed holes and concave shapes (Supplementary Fig. 20j,k).

These initial ROI masks included shapes from multiple periods that were 
actually from a single cell. To further reduce the number of masks to putative 
individual cell somas, we computed a feature vector from each mask that included 
morphological attributes such as location, area, perimeter, and compactness, 
among others (Supplementary Fig. 20l). A battery of heuristic decisions applied 
on these attributes allowed us to combine, eliminate, or maintain an ROI 
(Supplementary Fig. 20l,m). A final discrimination step, using a binary relevance 
classifier fed by experimental metadata (for example, Cre line and imaging depth) 
along with the previous morphological features, further filtered the global masks 
into the final ROIs used for trace extraction.

Targeting refinement for putative RL neurons. In all experiments, the center 
of the two-photon FOV was aimed close to the retinotopic center of the targeted 
visual region, as mapped by ISI. Retinotopic mapping of RL commonly yielded 
retinotopic centers close to the boundary between RL and somatosensory cortex. 
Consequently, for some RL experiments, the FOV spanned the boundary between 
the visual and somatosensory cortex. All RL experiments were reviewed with a 
semiautomated process (Supplementary Fig. 21), and ROIs that were deemed  
to lie outside putative visual cortex boundaries (~25%) were excluded from  
further analysis.

Neuropil subtraction. To correct for contamination of the ROI calcium traces by 
surrounding neuropil, we modeled the measured fluorescence trace of each cell as 
FM = FC + rFN, where FM is the measured fluorescence trace, FC is the unknown true 
ROI fluorescence trace, FN is the fluorescence of the surrounding neuropil and r 
is the contamination ratio. To estimate the contamination ratio for each ROI, we 
selected the value of r that minimized the cross-validated error

E ¼
X

t

FC � FM þ rFNj j2

over four folds. We computed the error over each fold with a fixed value of r, for a 
range of r values. For each fold, FC was computed by minimizing

C ¼
X

t

FC � FM þ rFNj j2þλ LFCj j2

where L is the discrete first derivative (to enforce smoothness of FC) and λ is 
a parameter set to 0.05. After determining r, we computed the true trace as 
FC = FM − rFN, which was used in all subsequent analysis (Supplementary Fig. 22).

Demixing traces from overlapping ROIs. We demixed the activity of all recorded 
ROIs by using a model where every ROI had a trace distributed in some spatially 
heterogeneous, time-dependent fashion

Fit ¼
X

k

WkitTkt

where W is a tensor containing time-dependent weighted masks: Wkit measures 
how much of neuron k’s fluorescence is contained in pixel i at time t. Tkt is the 
fluorescence trace of neuron k at time t—this is what we want to estimate. Fit is the 
recorded fluorescence in pixel i at time t.

This model applied to all ROIs before filtering for somas. We filtered out 
duplicates (defined as two ROIs with >70% overlap) and ROIs that were the union 
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of others (any ROI where the union of any other two ROIs accounted for 70% of 
its area) before demixing and applied the remaining filtering criteria afterwards. 
Projecting the movie F onto the binary masks, A, reduced the dimensionality of the 
problem from 512 × 512 pixels to the number of ROIs

X

i

AkiFit ¼
X

k;i

AkiWkitTkt

where Aki is 1 if pixel i is in ROI k and 0 otherwise—these are the masks from 
segmentation, after filtering. At time point t, this yields the linear regression

AF tð Þ ¼ ðAWT tð ÞÞT tð Þ

where we estimated the weighted masks W by projection of the recorded 
fluorescence F onto the binary masks A. On every frame t, we computed the linear 
least-squares solution T̂

I
 to extract each ROI’s trace value.

It was possible for ROIs to have negative or zero demixed traces T̂
I

. This 
occurred if there were unions (one ROI composed of two neurons) or duplicates 
(two ROIs in the same location with approximately the same shape) that our  
initial detection missed. If this occurred, those ROIs and any that overlapped 
them were removed from the experiment. This led to the loss of ~1% of ROIs 
(Supplementary Fig. 22).

ROI matching. The FOV for each session and the segmented ROI masks were 
registered to each other with an affine transformation. To map cells, a bipartite 
graph matching algorithm was used to find the correspondence of cells between 
sessions A and B, A and C, and B and C. The algorithm took cells in the pairwise 
experiments as nodes and the degree of spatial overlapping and closeness between 
cells as edge weight. By maximizing the summed weights of edges, the bipartite 
matching algorithm found the best matching between cells. Finally, a label 
combination process was applied to the matching results of sessions A and B, A 
and C, and B and C, producing a unified label for all three experiments.

ΔF/F. To calculate the ΔF/F for each fluorescence trace, we first calculated 
baseline fluorescence by using a median filter of width 5,401 samples (180 s). We 
then calculated the change in fluorescence relative to baseline fluorescence (ΔF), 
divided by baseline fluorescence (F). To prevent very small or negative baseline 
fluorescence, we set the baseline as the maximum of the median filter-estimated 
baseline and the s.d. of the estimated noise of the fluorescence trace.

L0-penalized event detection. We used the L0-penalized method of Jewell et al. 
for event detection17,71. We refer to this as ‘event’ detection because low firing rate 
activity is difficult to detect. For each ΔF/F trace, we removed slow timescale 
shifts in the fluorescence with a median filter of width 101 samples (3.3 s). We 
then applied the L0-penalized algorithm to the corrected ΔF/F trace. The L0 
algorithm has two hyperparameters: gamma and lambda. Gamma corresponds to 
the decay constant of the calcium indicator. We set gamma to be the decay constant 
obtained from jointly recorded optical and electrophysiology with the same genetic 
background and calcium indicator. Time constants can be found at https://github.
com/AllenInstitute/visual_coding_2p_analysis/blob/master/visual_coding_2p_
analysis/l0_analysis.py. Supplementary Fig. 23 shows the extracted linear kernels 
for Emx1-Ai93 and Cux2-Ai93 from which gamma has been extracted by fitting 
the fluorescence decay with a single exponential. The rise time, amplitude and 
shape of the extracted linear kernels are mainly a function of the genetically 
encoded calcium indicator (GCaMP6f) and appear to be largely independent  
of the specific promoter driving expression.

To estimate lambda, which controls the strength of the L0 penalty, we estimated 
the s.d. of the trace. We set lambda by using bisection to minimize the number of 
events smaller than 2 s.d. of the noise, while retaining at least one recovered event. 
We chose 2 s.d. by maximizing the hit–miss rate on eight hand-annotated traces 
during locally sparse noise stimulation. These traces were uniformly sampled 
from a distribution of signal-to-noise ratio for ΔF/F traces. The noise level was 
computed as the robust s.d. (1.4826 times the median absolute deviation), and the 
signal level was the median ΔF/F after thresholding at the robust s.d.

To assess how the events detected with the above procedure related to actual 
spikes, we performed event detection on the fluorescence of cells that were imaged 
simultaneously with loose patch recordings. Because the true spike train is known 
for these data, we computed the expected probability of detecting an event, as well 
as the expected event magnitude, as a function of the number of spikes observed in 
a set of detection windows relevant to the pipeline data analyses (for example, static 
gratings, natural scenes and locally sparse noise templates are presented for 0.25 s 
each) (Supplementary Fig. 23).

Analysis. All analysis was performed with custom Python scripts by using 
NumPy72, SciPy73, Pandas74 and Matplotlib75.

Direction selectivity was computed from mean responses to drifting gratings, at 
the cell’s preferred temporal frequency, as

DSI ¼ Rpref � Rnull

Rpref þ Rnull

where Rpref is a cell’s mean response in its preferred direction and Rnull is its mean 
response to the opposite direction.

The temporal frequency tuning, at the preferred direction, was fit using either 
an exponential curve (for the highest and lowest peak temporal frequency) or a 
Gaussian curve (other values). The reported preferred temporal frequency was 
taken from these fits. The same was done for spatial frequency tuning, fit at the 
cell’s preferred orientation and phase in response to the static gratings. In both 
cases, if a fit could not converge, a preferred frequency was not reported.

Spatial receptive fields were computed from locally sparse noise, in two stages. 
First, we determined whether a cell had a receptive field by a statistical test, 
described in the “Statistics” section below. Second, we computed the receptive field 
itself. A second statistical test, described in the “Statistics” section below, was used 
to determine inclusion of each spot in the receptive field. Determining statistical 
significance was a less common but important step necessary because of the size of 
the dataset.

If a neuron was found to have a receptive field, the spots that were identified for 
receptive field membership were fit with a two-dimensional Gaussian distribution, 
with orientation, azimuth/elevation and x/y s.d. serving as degrees of freedom for 
the optimization. On and Off subregions (that is, white and black spots) were fit 
separately. Subregion area was defined as the 1.5 s.d. ellipse under this fit Gaussian, 
measured in units of squared visual degrees. Up to two On and Off subregions 
were fit. The total area of the receptive field was computed as the sum of all 
subregion areas, correcting for overlap.

Lifetime sparseness was computed by using the definition in Vinje and Gallant20

SL ¼
1� 1

N

P
i
rið Þ2P
i
r2i

1� 1
N

where N is the number of stimulus conditions and ri is the response of the neuron 
to stimulus condition i averaged across trials. Population sparseness was computed 
with the same metric, but where N was the number of neurons and ri was the 
average response vector of neuron i to all stimulus conditions.

For each stimulus, we computed CCmax, the expected correlation between 
the sample trial-averaged response and the true (unmeasured) mean response. It 
provides an upper bound on the expected performance of any model that predicts 
response from the given stimulus trial structure. We followed the computation 
from Schoppe et al.76

1
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¼
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 !vuut

where N is the number of trials and Rn is the time series of the response on the nth 
trial. For Rn, we used the trace of extracted event magnitudes at 30 Hz, smoothed 
with a Gaussian window of width 0.25 s.

We computed ‘noise’ and ‘signal’ correlations in the population responses. 
Signal correlations were computed as the Pearson correlation between the 
trial-averaged stimulus responses of pairs of neurons. To prevent trial-by-trial 
fluctuations from contaminating our signal correlation estimates, we separated the 
trials for each stimulus into two subsets and calculated the correlation between 
the trial-averaged responses with each subset of trials. We averaged the signal 
correlations over 100 random splits of the trials. Noise correlations were computed 
as the Pearson correlation of the single-trial stimulus responses for a pair of 
neurons and a given stimulus and then averaged over stimuli. For natural movies, 
we computed the noise and signal correlations of the binned event counts in non-
overlapping ten-frame windows. We computed ‘spontaneous correlations’ as the 
Pearson correlation of the detected event trains during the periods of spontaneous 
activity recording.

Decoding. We used k-nearest-neighbors classifiers to decode the visual stimulus 
identity (for example, the natural scene number, within the natural scenes 
responses) from the population vector of single-trial responses, by using the 
correlation distance between response vectors. We report the performance on 
the heldout data from fivefold cross-validation. On each cross-validation fold, we 
performed an inner-round of twofold cross-validation to choose the number of 
neighbors from eight logarithmically spaced options (1, 2, 4, 7, 14 and 27).

Categorical regression model for trial responses to drifting gratings. We fit linear ridge 
regression models for the trial-averaged responses (events summed during each 
stimulus presentation). The response for trial t, Rt, is governed by the following 
equation

Rt ¼
X

s

wsI
t
s

where Its
I

 is the characteristic function for stimulus condition s during trial t. Its
I

 is 
equal to 1 when the stimulus condition is equal to s during trial t and 0 otherwise, 
and ws is the weight for stimulus condition s (it gives the response of the neuron to 
stimulus s).
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We fit two separate models, one for which the stimulus conditions enumerate 
the different values of the drifting grating (that is, orientations and temporal 
frequencies, including the blank sweep; 41 total conditions) and another for which 
each stimulus condition occurred in pairs, one during running and one when 
the animal was stationary. On each stimulus trial, we classified the locomotion 
as running or stationary by using a Gaussian mixture model with a Dirichlet 
process prior for the number of components. Stationary trials were identified by 
the component with the smallest variance among those with mean speed < 1 cm s–1 
(if any existed). We used stimulus conditions with at least five repetitions in each 
behavioral state and used the same number of trials for each stimulus condition in 
each behavioral state.

We regressed the summed trial against the combination of stimulus condition 
and behavioral state (for example, 180 degrees, 4 Hz and running). The regularization 
weight was chosen by leave-one-out cross-validation on the training data. We also 
regressed against just the locomotion state, binning the activity and running speed 
into pseudo-trials of the same length as the drifting grating trials. We measured 
model performance by the correlation of the predictions and data on heldout trials 
(fivefold cross-validation).

Regression models for mouse running speed. We performed a polynomial regression 
of each neuron’s activity against running speed. To do this, we rank-sorted the 
running speed and binned it into 900-point bins. All speeds between −1 cm s–1 
and 1 cm s–1 were labeled stationary. We summed each neuron’s events in the same 
speed bins to compute the speed tuning. We then fit a polynomial regression 
for the speed tuning with fivefold cross-validation. On each training fold, we 
performed an inner twofold cross-validation to select the polynomial degree 
between 1 and 4. We used ridge regression with leave-one-out cross-validation to 
choose the regularization parameter between 0.5 and 100.

3D Gabor wavelet model for temporal responses. Each neuron was modeled as a 
sparse linear combination of linear and quadratic basis functions, similarly to 
other approaches77–79. We used a pyramid of 3D Gabor wavelet filters that tiled 
the stimulus at multiple scales, directions, and temporal frequencies (Fig. 6a). The 
filters are defined by

f x; y; t : λ; θ;ψ ; σ; γð Þ ¼ exp � x02 þ y02 þ γt2

2σ2

� �
exp i 2π

x0
λ
þ ψ t

� �� �

where

x0 ¼ x cosθ þ y sinθ

y0 ¼ �x sinθ þ y cosθ

λ controls spatial frequency, θ orientation, ψ temporal frequency, σ the Gaussian 
envelope, and γ the Gaussian envelope in time. This linear basis  
forms a reasonably tight frame. The parameters that generate the set of filters  
were adapted and scaled to the tuning properties of mouse visual cortex. We 
estimated weights for ten time lags for each basis function to enable fitting of 
the temporal kernel. The weighted sum of the basis functions was passed to a 
parameterized soft-plus nonlinearity. The filters were temporally convolved with 
the stimulus. The output of each filter was z scored before fitting with threshold 
gradient descent.

Hi tð Þ ¼
X

x;y

X

τ

fi x; y; τð ÞSðx; y; t � τÞ

The model is technically a generalized linear model (where the linear model is 
built by considering linear combinations of the features Hi(τ) and H2

i ðτÞ
I

, along with 
a temporal filter for the running signal of the animal, r(t), with a parameterized 
soft-plus output. The weights wi were fit to the data by using threshold gradient 
descent and the Poisson negative log-likelihood cost function, with rate

R̂ tð Þ ¼ log 1þ exp k
X

i

X

τ

Hi t � τð Þwl
i τð Þ þ H2

i t � τð Þwq
i ðτÞ þ r t � τð ÞwrðτÞ

 ! !
=k

This model, with a quadratic dependence on the stimulus H2
i ðτÞ
I

, is akin to a 
regularized STA/STC analysis, adapted to fit the full spatiotemporal receptive field 
by using stimuli from the dataset.

We estimated a sparse combination of basis functions for each neuron by using 
a variant of threshold gradient descent80. In threshold gradient descent, only basis 
functions whose gradients have magnitudes larger than some threshold, t, of the 
largest gradient magnitude have their weights updated. All weights start at 0, and 
the descent is terminated by using early stopping. The threshold parameter, which 
can range from 0 to 1, controls the sparsity of the solution. We used a threshold 
value of 0.8.

We modified the threshold gradient descent algorithm in three ways. First, 
we updated the weights at all time lags for any basis function over the threshold, 
allowing the temporal kernel to be smooth. Second, at each iteration, any basis 

function whose gradient exceeded the threshold had its weight added to the ‘active 
set’, which was maintained over the optimization, and then all weights in the active 
set were updated, preventing oscillations. Third, we used an adaptive step size. 
The step size increased by a factor of 1.2 at each iteration if generalization to the 
stopping set improved and decreased by a factor of 0.5 if generalization worsened81.

We used a nested sixfold cross-validation framework. We split the data into six 
sets each containing many 50-sample-long continuous blocks from throughout the 
dataset. A model was trained by starting with five separate models, each trained 
on a different combination of four of the five training sets, with the remaining set 
functioning as the stopping set. The five models were averaged together to make 
predictions on the test set. Reported model performance is the average on the 
test set across the six folds. Separate models were fit for the natural stimuli and 
the artificial stimuli. The weights for these models were sparse, and for all models 
fewer than 20% of the basis functions had non-zero weight values (Supplementary 
Fig. 11). The number of parameters for the model was 517,451.

Pupil position and area were measured (Supplementary Fig. 24), and these were 
incorporated into some of the models. These corrections had little effect on model 
performance (Supplementary Fig. 10).

We show examples of this model on four neurons in Supplementary Fig. 9.

Clustering of reliabilities. We performed a clustering analysis using the reliabilities 
by stimulus for each cell (defined as the percentage of responsive trials to the 
cell’s preferred stimulus condition). We did not include locally sparse noise in this 
analysis. We combined the reliabilities for natural movies by taking the maximum 
reliability over the different natural movie stimuli. We performed this analysis with 
two different inclusion criteria. For criterion 1, we included all cells that appeared 
in both sessions A and B. For criterion 2, we included all cells that appeared in all 
three sessions, A, B and C. This resulted in a set of four reliabilities for each cell 
(for the drifting gratings, static gratings, natural movies, and natural scenes). We 
performed a Gaussian mixture model clustering on these reliabilities for cluster 
numbers 1 to 50, by using the average Bayesian information criterion on heldout 
data with fourfold cross-validation to select the optimal number of clusters. Once 
the optimal model was selected, we defined a threshold for responsiveness by 
selecting the cluster with the lowest mean reliability over all stimuli. We set the 
threshold to be the maximum reliability plus 1 s.d. over the reliabilities for this 
cluster. By using this threshold, we identified each cluster according to its profile 
of responsiveness (that is, whether it responded to drifting gratings, etc.), defining 
these profiles as ‘classes’. For each cell, we predicted cluster membership by using 
the optimal model and then the class membership by using the threshold. We 
repeated this process 100 times to estimate the robustness of the clustering and 
derive uncertainties for the number of cells belonging to each class.

Statistics. No statistical methods were used to predetermine sample sizes per location,  
but our sample sizes are similar to those reported in previous publications8,9.  
Data collection and analyses were not performed with blinding to the conditions 
of the experiments, as there was a single experimental condition for all acquired 
data. Within each transgenic Cre line, mice were randomly assigned to data 
collection to sample different areas and imaging depths. Stimulus conditions 
for gratings and natural scenes were presented in a randomized order within 
each epoch, as described. No other randomization was used as there were fixed 
experimental conditions for all other aspects of the dataset. Additional research 
design information can be found in the Nature Research Reporting Summary 
accompanying this study.

Test for significance of a receptive field map. We performed a chi-squared test  
to assess whether there was a significant response at each location to the locally 
sparse noise stimulus. For each location, we considered a 7 × 7 grid of locally sparse 
noise pixels centered on that location. The null model for this test was defined by 
assuming that a neuron lacking a receptive field has equal probability of producing 
a response regardless of the location and luminance (that is, black or white) of the 
spots displayed on the screen on any given trial. A neuron has a receptive field if 
there is a deviation beyond chance based on the null distribution. Chi-squared  
tests for independence were performed for each neuron and for each location by 
using the number of responses to quantify the dependence of responsive trials  
on the stimulus.

An assumption of the chi-squared test is that the response of the neuron on 
a given trial can only be attributed to a single spot; that is, only a single stimulus 
spot is presented on each trial. Although multiple non-gray spots appeared on the 
screen during each trial, the exclusion region of the locally sparse noise stimulus 
prevented two non-gray pixels within a 23° radius (for the 4.65° spot size) or 46° 
radius (for the 9.3° spot size) of each other from being presented on the same trial. 
Leveraging this structure in the stimulus, chi-squared tests were performed on 
patches in a visual space small enough to ensure that two or more non-gray pixels 
were rarely presented on the same trial, but large enough to ensure that the patch 
completely contained the receptive field for the test to detect the dependence of 
neuron responses on spot locations. We chose 32.2° × 32.2° patches for 4.65° spots 
and 64.4° × 64.4° patches for the 9.3° spot locally sparse noise (that is, a 7 × 7 grid 
of spot locations in each case). For each neuron, multiple chi-squared tests were 
performed on such patches to tile the entire stimulus monitor and the P values 
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from these tests were then corrected with the Šidák method to account for multiple 
comparisons. If the P value for any patch on the stimulus monitor was significant 
(P < 0.05) after multiple-comparison correction, the neuron was considered to have 
a receptive field.

Test for inclusion of locally sparse noise spots in a receptive field. The receptive 
field was computed by using an event-triggered average. Because more than 
one stimulus spot was present during a given trial, it is not possible to infer the 
stimulus–response relationship between spot locations and responses on a per-trial 
basis. Therefore, a statistically significant co-occurrence of spot presentation and 
responses across trials defined the inclusion criteria for membership of a stimulus 
spot in the receptive field. To begin, the stimulus was convolved with a spatial 
Gaussian (4.65° per sigma), to allow pooling of contributions to responses from 
nearby spots. A P value was computed for each spot (black and white separately) 
by constructing a null distribution for the number of trials that a spot was present 
during responsive trials. This per-spot null distribution was estimated by shuffling 
the identity of the responsive trials (n = 10,000 shuffles). Statistical outliers were 
identified by computing a P value for each spot relative to its null distribution. 
These P values were corrected for false discoveries by using the Šidák multiple-
comparisons correction and thresholded at P = 0.05 to identify receptive field 
membership.

Comparison of single-cell response metric distributions. To compare the distributions 
of single-cell response metrics across areas, layers and Cre lines, we used a 
Kolmogorov–Smirnov test with a Bonferroni correction for the number of 
comparisons, defined as the number of other distributions to which we were 
comparing, for example, for area-wise comparison of the Cux2 line, there were six 
areas in total and thus five comparisons for each area (first row of Supplementary 
Fig. 2). The Kolmogorov–Smirnov test was chosen as it does not assume a normal 
distribution nor equal variance.

Data product. The Allen Brain Observatory Visual Coding dataset is publicly 
available and accessible via a dedicated web portal (http://observatory.brain-
map.org/visualcoding/), with a custom Python-based application programming 
interface (API), the AllenSDK (https://github.com/AllenInstitute/AllenSDK). 
Data from each imaging session are contained within a NWB (Neurodata Without 
Borders) file82.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
This is an openly available dataset, accessible via a dedicated web portal (http://
observatory.brain-map.org/visualcoding), and a Python-based API, the AllenSDK 
(http://alleninstitute.github.io/AllenSDK).

Code availability
Code for analyses presented in this paper is available at https://github.com/
alleninstitute/visual_coding_2p_analysis.
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Extended Data Fig. 1 | Spontaneous and evoked event magnitude. a, Pawplot and box plots summarizing the mean event magnitude for neurons during 
the 5 minute spontaneous activity (mean luminance gray) stimulus. For a description of the visualization see Fig. 3. The box shows the quartiles of the 
data, and the whiskers extend to 1.5 times the interquartile range. Points outside this range are shown as outliers. See Extended Data Figure 3 for sample 
sizes. b, Pawplot and box plots summarizing the maximum evoked event magnitude for neurons’ responses to drifting gratings. See Extended Data Figure 3 
for sample sizes.
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Extended Data Fig. 2 | Response visualizations. Conventional tuning curves for drifting grating responses for one neuron. a, Direction tuning plotted at the 
preferred temporal frequency (4 Hz) (mean ± sem across 15 trials). Dotted line represents the mean response to the blank sweep. b, Temporal frequency 
tuning plotted at the preferred grating direction (270°) (mean ± sem). c, Heatmap of the direction and temporal frequency responses for cell, showing any 
possible interaction of direction and temporal frequency. d, All 15 trials at the preferred direction and temporal frequency, 2 second grating presentation 
is indicated by pink shading. The mean event magnitude is represented by intensity of the dot to the right of the trial. e, All trials are clustered, with the 
strongest response in the center and weaker responses on the outside. f, Clusters are plotted on a “Star plot”. Arms indicated the direction of grating 
motion, arcs indicate the temporal frequency of the grating, with the lowest in the center and the highest at the outside. Clusters of red dots are located 
at the intersection and arms and arcs, representing the trial responses at that condition. Tuning curves for static gratings for one neuron. g, Orientation 
tuning plotted at the preferred spatial frequency (0.04 cpd) for each of the four phases. (mean ± sem across 50 trials) Dotted line represents the mean 
response to the blank sweep. h, Spatial frequency tuning plotted at the preferred orientation (90°) for each of the four phases (mean ± sem). i, Heatmap 
of the orientation and spatial frequency at the preferred phase j, All trials at the preferred orientation, spatial frequency and phase, the 250 ms grating 
presentation is indicated by pink shading. The mean event magnitude is represented by the intensity of the dot to the right of the trial. k, All trials are 
clustered, with the strongest response in the center and weaker responses on the outside. l, Clusters are placed on a “Fan plot”. Arms represent the 
orientation and arcs represent the spatial frequency of the grating. At each intersection, there are four lobes of clustered dots, one for each phase at 
that grating condition. responses to natural scenes for one neuron. m, responses to each image presented (mean ± sem across 50 trials). Dotted line 
represents the mean response to the blank sweep. n, All trials of the image which elicited the largest mean response, the 250ms image presentation is 
indicated by pink shading. The mean event magnitude is represented by the intensity of the dot to the right of the trial. Trials are sorted o, and are plotted 
on a “Corona plot” p, Each ray represents the response to one image, with the strongest response on the inside and weaker responses at the outside. 
responses to natural movies for one neuron. q, responses of one neuron’s response to each of 10 trials of the natural movie. r, responses are plotted on 
a “Track plot”. Each red ring represents the activity of the cell to one trial, proceed clockwise from the top of the track. The outer blue track represents the 
mean response across all ten trials.
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Extended Data Fig. 3 | Responsiveness to drifting gratings. a, Table summarizing the numbers of experiments (expts) and neurons imaged for each Cre 
line, layer, area combination in response to drifting grating stimulus and the number, and percent, of neurons that were responsive to the drifting grating 
stimulus. b, Strip plots of the percent of neurons responsive to the drifting grating stimulus for each experiment.
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Extended Data Fig. 4 | Responsiveness to static gratings. a, Table summarizing the numbers of experiments and neurons imaged for each Cre line, layer, 
area combination in response to static grating stimulus and the number, and percent, of neurons that were responsive to the static grating stimulus.  
b, Strip plots of the percent of neurons responsive to the static grating stimulus for each experiment.
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Extended Data Fig. 5 | Responsiveness to locally sparse noise. a, Table summarizing the numbers of experiments (expts) and neurons imaged for each 
Cre line, layer, area combination in response to locally sparse noise stimulus and the number, and percent, of neurons that were responsive to the locally 
sparse noise stimulus. b, Strip plots of the percent of neurons responsive to the locally sparse noise stimulus for each experiment.
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Extended Data Fig. 6 | Responsiveness to natural scenes. a, Table summarizing the numbers of experiments (expts) and neurons imaged for each Cre 
line, layer, area combination in response to locally sparse noise stimulus and the number, and percent, of neurons that were responsive to the locally 
sparse noise stimulus. b, Strip plots of the percent of neurons responsive to the locally sparse noise stimulus for each experiment.
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Extended Data Fig. 7 | Responsiveness to natural movies. a, Table summarizing the numbers of experiments (expts) and neurons imaged for each Cre 
line, layer, area combination in response to any of the natural movie stimuli and the number, and percent, of neurons that were responsive to the natural 
movie stimuli. b, Strip plots of the percent of neurons responsive to the natural movie stimuli for each experiment.
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Extended Data Fig. 8 | Populations for running correlation analysis. Table summarizing the number of experiments and neurons, for each Cre line, layer, 
area combination, included in the running correlation analysis. These are from sessions in which the mouse was running between 20–80% of the time.
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Extended Data Fig. 9 | Populations for wavelet model analysis. Table summarizing the number of experiments and neurons for each Cre line, layer, area 
combination for which wavelet models were fit. The neurons had to be present in all three imaging sessions to be included.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Two photon imaging data was collected using either Nikon Elements (v4.3) or Sciscan (v12.0), with custom Python 2.7 scripts to run the 
workflow and interface with the eye-tracking and behavior cameras. Intrinsic signal imaging data was collected using custom scripts 
written in Python. 

Data analysis All analyses were performed using custom scripts written in Python 2.7, using NumPy, SciPy, Pandas, Matplotlib, Seaborn, Keras, and 
Tensorflow, or MATLAB. Analysis code is available at http://alleninstitute.github.io/AllenSDK/ and https://github.com/alleninstitute/
visual_coding_2p_analysis. Event extraction was performed using FastLZeroSpikeInference available at https://github.com/jewellsean/
FastLZeroSpikeInference.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

This is an openly available dataset, accessible via a dedicated web portal (http://observatory.brain-map.org/visualcoding), with a custom Python-based Application 
Programming Interface (API), the AllenSDK (http://alleninstitute.github.io/AllenSDK/). 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample size was determined qualitatively to balance repeated experiments for each area/layer/Cre line combination and the preserve the 
breadth of survey. Our sample size matched, or exceeded, those found in previous publications. 

Data exclusions Mice were excluded for evidence of epileptiform activity, and individual imaging sessions were failed if there were signs of bleaching, 
saturation, excessive z-drift, or animal stress, among other factors, as described in our Methods.

Replication Data acquired from multiple mice from multiple litters per transgenic line surveyed. Extensive acquisition metadata as well as detailed white 
papers are reported as part of the Allen Cell Brain Observatory (observatory.brain-map.org); these additional details are intended to aid other 
laboratories if they seek to replicate the results presented in this study.

Randomization Within each transgenic Cre line, mice were randomly assigned to data collection in order to sample different areas and imaging depths. 
Stimulus conditions for gratings and natural scenes were presented in a randomized order within each epoch, as described. No other 
randomization was used as there were fixed experimental condition for all other aspects of the data set.

Blinding Blinding was not relevant to this study as there was a single experimental condition for all data collected.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Mus musculus, male and female, mean age 108 ± 17 (st. dev.) days Wild animals 

Wild animals This study did not use wild animals.

Field-collected samples This study did not use samples collected from the field

Ethics oversight Experiments involving mice were approved by the Institutional Animal Care and Use Committees of the Allen Institute for Brain 
Science in accordance with NIH guidlines.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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